Note

Numerical Analysis and Evaluation of Normalized Repeated Integrals of the Error Function and Related Functions*

INTRODUCTION

Computations in physics and chemistry often require the calculation of functions related to the repeated integrals of the complementary error function [1]

$$i^{n} \operatorname{erfc} x = \int_{x}^{\infty} dt \, i^{n-1} \operatorname{erfc} t$$

$$= 2\pi^{-1/2} \int_{x}^{\infty} dt \, e^{-t^{2}} (t-x)^{n} / n!$$

$$i^{-1} \operatorname{erfc} x = 2\pi^{-1/2} e^{-x^{2}}.$$
(1b)

We have encountered them in molecular quantum mechanics involving overlap integrals between an exponential-type atomic orbital $(r^{k-1}e^{-r})$ and a Gaussian-type atomic orbital $(r^{l-1}e^{-\alpha r^2})$, giving rise to [2]

$$S_n = \int_0^\infty r^n e^{-(r+\alpha r^2)} dr, \qquad n = k+l.$$
 (2a)

It can be shown that they are related to the functions of Eq. (1) by

$$S_n = \frac{1}{2} \pi^{1/2} n! \, (4x^2)^{(n+1)/2} (i^n \operatorname{erfc} x) \, e^{x^2} \tag{2b}$$

From a numerical point of view, the functions given in Eqs. (1) and (2) are extremely unsatisfactory because they rapidly vary by many orders of magnitude as n and x increase. For this reason a new set of functions, $\operatorname{erfc}_n(x)$, called "Normalized Repeated Error Integrals", is introduced in this note. They are numerically very-well behaved and, on the basis of a brief numerical analysis, a computational method is described by which they can be evaluated without loss of significant figures. A double-precision FORTRAN IV computer program based on this method has been prepared. It evaluates $\operatorname{erfc}_0(x)$ to at least 15 significant figures and $\operatorname{erfc}_n(x)$ for $n \ge 1$ to at least 14 significant figures on the IBM 360/65

* Work performed in the Ames Laboratory of the U.S. Atomic Energy Commission, Contribution No. 2907.

computer. It has been submitted to the Quantum Chemistry Program Exchange at Indiana University.

NORMALIZATION

The normalized repeated error integrals are defined as

$$\operatorname{erfc}_{n}(x) = 2^{n} \Gamma(1 + n/2) (i^{n} \operatorname{erfc} x) e^{x^{2}}$$
$$= \left[2/\Gamma\left(\frac{n+1}{2}\right) \right] \int_{x}^{\infty} dt (t-x)^{n} e^{-t^{2}+x^{2}}, \quad \text{for} \quad n = 0, 1, \dots, (3a)$$

$$\operatorname{erfc}_0(x) = e^{x^2} \operatorname{erfc} x,$$
 (3b)

$$\operatorname{erfc}_{-1}(x) = 1. \tag{3c}$$

The behavior of these functions for $0 \le n \le 5000$ and $10^{-5} \le x \le 10^4$ is exhibited in Fig. 1.¹ Note that

$$\lim_{n \to \infty} \operatorname{erfc}_n(x) = 0. \tag{3d}$$

¹ The logarithms to base 10 and *e* are denoted by "log" and "ln", respectively.

168

Figure 1 suggests that it may be useful to write

$$\operatorname{erfc}_n(x) = \operatorname{erfc}_0[xg_n(x)]$$
 or $\operatorname{erfc}_n(x) = \operatorname{erfc}_1[xh_n(x)],$ (4a)

where $g_n(x)$ and $h_n(x)$ can be expected to be slowly varying functions. A rough numerical examination yielded the expression

$$log g_n(x) = g'(\mu) + xg''(\mu),$$

$$g'(\mu) = 0.53\mu,$$

$$g''(\mu) = \mu(0.59 - 1.49\mu + 0.98\mu^2 - 0.06\mu^3),$$

$$\mu = log(n + 1).$$
(4b)

The accuracy of this approximation, as seen from Table I, indicates that this approach can be further refined.

$\log x$	$\operatorname{erfc}_{10}(x)$	$\operatorname{erfc}_{0}(xg_{10})$	$erfc_{100}(x)$	$erfc_{0}(xg_{100})$	$\operatorname{erfc}_{1000}(x)$	$erfc_{0}(xg_{1000})$
-3	0.995	0.995	0.986	0.986	0.956	0.958
-2.5	0.988	0.988	0.957	0.960	0.866	0.864
-2	0.956	0.961	0.870	0.874	0.640	0.620
-1.5	0.866	0.876	0,640	0.641	0.240	0.192
-1	0.640	0.668	0.244	0.246	0.011	0.010
-0.5	0.240	0.340	0.010	0.021	0.000	0.000
0	0.016	0.044	0.000	0.000	0.000	0.000

TABLE I

Comparison between $\operatorname{erfc}_n(x)$ and $\operatorname{erfc}_0[xg_n(x)]$.

RECURRENCE RELATION

The computational method to be described is based on the recurrence relation for the functions (3), viz.,

$$\operatorname{erfc}_{n}(x) = -x\gamma(n)\operatorname{erfc}_{n-1}(x) + \operatorname{erfc}_{n-2}(x), \quad n = 2, 3, ...,$$
 (5a)

$$\operatorname{erfc}_{1}(x) = -x\gamma(1)\operatorname{erfc}_{0}(x) + 1, \tag{5b}$$

where

$$\gamma(n) = \Gamma\left(\frac{n}{2}\right) / \Gamma\left(\frac{n+1}{2}\right), \tag{6a}$$

$$\gamma(n) = \frac{(n-2)(n-4)(n-6)}{(n-1)(n-3)(n-5)} \cdots \begin{cases} \cdots \frac{3.1}{4.2} \pi^{1/2}, & \text{if } n = \text{odd}, \\ \cdots \frac{4.2}{5.3} 2\pi^{-1/2}, & \text{if } n = \text{even.} \end{cases}$$
(6b)

This relation is obtained from the recurrence relation for $i^n \operatorname{erfc} x$ given by Abramowitz [1]. Some approximate values of $\gamma(n)$ are as follows:

For very small values of x, the functions

$$\operatorname{erf}_{n}(x) = 1 - \operatorname{erfc}_{n}(x) \tag{7}$$

are preferable. They satisfy the relations

$$\operatorname{erf}_{n}(x) = \operatorname{erf}_{n-2}(x) + x\gamma(n)[1 - \operatorname{erf}_{n-1}(x)], \quad (8a)$$

$$\operatorname{erf}_{1}(x) = x\gamma(1)[1 - \operatorname{erf}_{0}(x)], \qquad (8b)$$

$$\operatorname{erf}_0(x) = e^{x^2} \operatorname{erf} x + (1 - e^{x^2}),$$
 (8c)

$$\operatorname{erf}_{-1}(x) = 0.$$
 (8d)

As one recurs forward, significant figures are lost if n becomes too large. We have been concerned with generating $\operatorname{erfc}_n(x)$ to an accuracy of at least 14 significant figures. In this case, forward recursion is applicable for

$$(n+1) \leqslant R(x) = 1.3/x^2.$$
 (9)

The curve R(x) is shown in Fig. 2 where, because of the logarithmic representation, it appears as a straight line. Since, in practice, all functions with $0 \le n \le N$ are needed together, our method and program evaluates and stores all those functions simultaneously. Two cases arise: N < R(x) and $N \ge R(x)$. If N < R(x), forward recursion is used. If $N \ge R(x)$, backward recursion is used all the way to n = 0.

Forward Recursion, for N < R(x)

In this case, the recurrence relation (5) or (8) is used to generate all the $\operatorname{erfc}_n(x)$. The factors $\gamma(n)$ occurring in it can be calculated from

$$\gamma(n) = \gamma(n-2)[1 - (n-1)^{-1}], \qquad (10a)$$

$$\gamma(n)\,\gamma(n+1)=2/n,\tag{10b}$$

$$\gamma(1) = \pi^{1/2}, \quad \gamma(2) = 2\pi^{-1/2}.$$
 (10c)

170

For the calculation of $\operatorname{erfc}_0(x)$, two ranges of x have to be distinguished. If $x \leq 13.3$, the complementary error function (erfc x) can be approximated by a polynomial whose coefficients are obtained from expansions in Chebyshev polynomials [3]. The IBM 360-supplied library subprogram uses this method. This function is then multiplied by e^{x^2} to obtain $\operatorname{erfc}_0(x)$. For x > 13.3, e^{x^2} overflows (>10⁷⁵) the computer, and $\operatorname{erfc}_0(x)$ is obtained from the continued fractions given by Abramowitz [1],

$$\pi^{1/2}\operatorname{erfc}_{0}(x) = \frac{1}{x+} \frac{1/2}{x+} \frac{1}{x+} \frac{3/2}{x+} \frac{2}{x+} \cdots \quad \text{for } x > 0.$$
 (11)

The procedure described by Abramowitz [4] is used in calculating Eq. (11). An exhaustive search for finding the optimal method for evaluating $\operatorname{erfc}_0(x)$ over the entire argument range was not made.

For small values of x the recurrence relations (8) together with $\operatorname{erf}_0(x) = 2\pi^{-1/2}x + O(x^3)$ yields

$$\operatorname{erf}_{n}(x) \approx x\{\gamma(n) + \gamma(n-2) + \gamma(n-4) + \dots + \gamma(1) \text{ or } \gamma(0)\}, \qquad (12)$$

where $\gamma(0)$ is defined by $\gamma(0) = \gamma(2)$. From this equation, it is found that

$$\operatorname{erf}_{n}(x) < 10^{-16.15}, \quad \text{if} \quad (n+1) < L(x) = 10^{-31.53} x^{-1.94}.$$
 (13)

The line L(x) also appears as a straight line in Fig. 2. Below this line, $\operatorname{erfc}_n(x)$ is indistinguishable from 1 for the computer. Thus, the upward recurrence relation (5) works only for (n + 1) > L(x). For (n + 1) < L(x) the recurrence relations (8) must be used.

FIG. 2. Regions in the (x, n) plane referring to orders of magnitude and recursive evaluation of $\operatorname{erfc}_n(x)$.

BARDO AND RUEDENBERG

BACKWARD RECURSION, FOR $N \ge R(x)$

The choice of starting values required for backward recursion has been carefully discussed by Gautschi [5] for general recursion relations of the type (5). This section is concerned with the implementation of his general results in the present case.

The algorithm as applied to $\operatorname{erfc}_n(x)$ is as follows. First, a set of functions $P_n = K \operatorname{erfc}_n(x)$ is found, where K is independent of n but not of x. If N is the maximum value of n desired, and p the number of significant digits desired, the two starting functions required for the backward recursion are chosen as

$$P_{\nu} = 0, \qquad P_{\nu-1} = \text{an arbitrary constant},$$
 (14)

where the index ν must satisfy

 $\nu \ge N[1 + (p \ln 10 + \ln 2)/2(2N)^{1/2}x]^2.$

In our case p = 15 and, thus, we choose

$$\nu = N\rho, \tag{15}$$

where

$$\rho = \rho(N, x) = (1 + 12.4566/x N^{1/2})^2$$
(16)

The values of P_n for $n < \nu - 1$ are then generated using the backward recursion relation,

$$P_{n-2} = x\gamma(n) P_{n-1} + P_n$$
 (17)

until P_0 is obtained. This P_0 is compared with $\operatorname{erfc}_0(x)$, and K^{-1} is found as

$$K^{-1} = \operatorname{erfc}_0(x) / P_0$$
 (18)

The desired functions are then obtained from

$$\operatorname{erfc}_n(x) = K^{-1}P_n, \quad 1 \leq n \leq N.$$
 (19)

The function $\operatorname{ertc}_0(x)$ and the factors $\gamma(n)$ are calculated as before. From Fig. 1, it is evident that the values of P_n will increase during backward recursion. For this reason, the constant in Eq. (14) is chosen as 10^{-75} .

The factor ρ in Eq. (15) is always > 1. It is of some interest to know its dependence upon N and x. It is apparent that the lines $\rho = \text{constant}$ will also be straight lines in Fig. 2. Some of them are shown, with the appropriate ρ value indicated, as dashed lines. The largest ρ value, namely $\rho = 118.6$, occurs for the line R(x), which denotes the lower limit of the downward recursion region. The values of ν ,

corresponding to points on *this* line according to Eq. (15), are indicated by a dotted straight line in Fig. 2.

If, for a given x and N, ν is chosen smaller than the value of Eq. (15), then the accuracy obtained deteriorates more and more below 15 significant figures, as ν is decreased below the value of Eq. (15). On the other hand, no further improvement in accuracy within the first 15 figures occurs, if one chooses ν larger than the value of Eq. (15).

UPPER LIMIT FOR BACKWARD RECURSION

For sufficiently large values of x and N, the functions $\operatorname{erfc}_n(x)$ will underflow a given computer. For large values of x, the limiting behavior is

$$\operatorname{erfc}_{n}(x) \approx \Gamma(1+n/2)/\pi^{1/2}x^{n+1}.$$
 (20)

The curve where $\operatorname{erfc}_n(x) = 10^{-75}$ is indicated by H(x) in Fig. 2. Hence, $\operatorname{erfc}_n x = 0$ for n > H(x) on our computer. In particular, one has $\operatorname{erfc}_0(x) = 0$ for $x = 10^{74.75}$; hence this is the largest x value for which any $\operatorname{erfc}_n(x)$ is nonzero. For $n \ge 1$, the curve H(x) is given by

$$(\log H + 2\log x - 4.16)(\log H + 0.1\log x - 1.66) = 0.33, \text{ if } 0 < \log x \le 1.70,$$
(21a)

 $(\log H + 2 \log x - 4.16) = 7.02(\log H - 0.04 \log x - 2.05),$

if
$$1.70 < \log x < 37$$
. (21b)

It has the straight line log(n + 1) = 4.16 - 2 log x as an asymptote. The latter corresponds to a ρ value of 1.217.

It can be seen that no overflow or underflow problems occur in the use of Eqs. (18) and (19) if the initial value of ν in Eq. (14) is chosen to be $\langle H(x) \rangle$ and $P_{\nu-1} = 10^{-75}$ as mentioned before. Hence, $\operatorname{erfc}_n(x)$ is set equal zero for all *n* values $\geqslant H(x)$ and Eq. (15) is replaced by

$$\nu = \min\{N\rho, H(x)\}.$$
(22)

The difference between ν and N, as given by Eq. (15), is negligible for N lying on the line H(x). This can be seen from the dotted curve which gives the ν value corresponding to N values on H(x).

The functions i^n erfc x and $S_n(x)$, mentioned in the introduction, yield considerably more limited computational schemes, because the orders of magnitude of these functions change much more drastically with n and x.

BARDO AND RUEDENBERG

References

- 1. M. ABRAMOWITZ AND I. A. STEGUN, "Handbook of Mathematical Functions," pp. 298-300, National Bureau of Standards, *Applied Math. Ser.* 55, Washington, D. C., 1965.
- 2. K. O-OHATA, H. TAKETA, AND S. HUZINAGA, J. Phys. Soc. Japan 11 (1966), 2306.
- 3. IBM Corporation, "IBM System/360: FORTRAN IV Library Subprograms," Form C28-6596, Programming Systems Publications, New York, N. Y., 1966.

4. See Ref. [1, p. 19].

5. W. GAUTSCHI, Math. Comp. 15 (1961), 227-232.

RECEIVED: December 15, 1970

RICHARD D. BARDO AND KLAUS RUEDENBERG

Institute of Atomic Research, Departments of Chemistry and Physics, Iowa State University, Ames, Iowa 50010

Printed in Belgium