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Note 

Numerical Analysis and Evaluation 

of Normalized Repeated Integrals 

of the Error Function and Related Functions* 

INTRODUCTION 

Computations in physics and chemistry often require the calculation of functions 
related to the repeated integrals of the complementary error function [l] 

s 

co 
Perfcx = dt P-l erfc t 

0 

= 2n-1/2 fr dt ect2(t - .x)%/n! 
-0 

i-l erfc x = 2n-1/2&. 

We have encountered them in molecular quantum mechanics involving overlap 
integrals between an exponential-type atomic orbital (?-le+‘) and a Gaussian-type 
atomic orbital (rz-kaT2), giving rise to [2] 

It can be shown that they are related to the functions of Eq. (1) by 

S, = .pP~! (4x3(~+1)1yp erfc X) ex2 G33) 

From a numerical point of view, the functions given in Eqs. (1) and (2) are 
extremely unsatisfactory because they rapidly vary by many orders of magnitude 
as 12 and x increase. For this reason a new set of functions, erfc&), called 
“Normalized Repeated Error Integrals”, is introduced in this note. ‘They are 
numerically very-well behaved and, on the basis of a brief numerical analysis, 
a computational method is described by which they can be evaluated without loss 
of significant figures. A double-precision FORTRAN IV computer program based 
on this method has been prepared. ILevaluates erfc&) to at least 15 significant 
figures and erfc,(Jc) for n > 1 to at least 14 significant figures on the IBM 360/45 

* Work performed in the Ames Laboratory of the U. S. Atomic Energy Commission, ~;h)ntrG 
bution No. 2907. 

167 



16X BARD0 AND RUEDENBERG 

computer. It has been submitted to the Quantum Chemistry Program Exchange at 
Indiana University. 

NORMALIZATION 

The normalized repeated error integrals are defined as 

erfc,(x) = 2”T(l + n/2)(i” erfc x) e”’ 

= [2/T (51-,] 1,” dt(t - x>” c++~~, for IZ = 0, l,..., (3a) 

erfc,(x) = exa erfc x, (3b) 

erfc-r(x) = 1. (34 

The behavior of these functions for 0 < n \( 5000 and IOF < x < lo4 is exhibited 
in Fig. 1.1 Note that 

$I% erfc,(x) = 0. (34 
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FIG. 1. Behavior of erfc,(x). 

1 The logarithms to base 10 and e are denoted by “log” and “In”, respectively. 
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Figure 1 suggests that it may be useful to write 

erfc,(x) = erfc,[xg,(x)] or erfc,(x) = erfc,[xh,(x)], 

where g,(x) and h,(x) can be expected to be slowly varying functions. 
numerical examination yielded the expression 

g”(p) = ~(0.59 - 1.49~ t 0.98$ - 0.06$): 

p = log@ + 1). 

The accuracy of this approximation, as seen from Table I, indicates that rhis 
approach can be further refined. 
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TABLE I 

Comparison between e&,(x) and erfc &g*(x)]. 

erfc &) erfc o(xglo) erfc d4 erfc o(xg~oo) erfc looo(x) erfc o(x~lBoo~ 

0.995 0.995 0.986 0.986 0.956 0.958 
0.988 0.988 0.957 0.960 0.866 0.864 
0.956 0.961 0.870 0.874 0.640 0.620 
0.866 0.876 0.640 0.641 0.240 0.192 

0.640 0.668 0.244 0.246 0.011 
0.240 0.340 0.010 0.021 0.000 

0.016 0.044 0.000 0.000 0.000 

RECURRENCE RELATION 

The computational method to be described is based on the recurrence relation 
for the functions (3), viz., 

erfc,(x) = -xr(n) erfc,&) + erfc,&), 

erfq(x) = -xy(l) erfc,(x) + 1, (5b) 

where 
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(n - 2)(n - 4)(n - 6) 
I+) = (n - l)(n - 3)(yl - 5) *.* 

if n = odd, 
(6bS 

if n = even. 

This relation is obtained from the recurrence relation for in erfc x given by 
Abramowitz [l]. Some approximate values of r(n) are as follows: 

n 1 2 3 10 100 1000 
244 1.772 I.128 0.886 0.459 0.142 0.0447 

For very small values of x, the functions 

erf,(x) = 1 - erfclz(x) 

are preferable. They satisfy the relations 

erf,(x) = erf,-,(x) + xr(n)[l - erf,-,(x)1, 

erfX4 = xy(l)[l - e4C4, 
erf,(x) = e5’ erf x + (1 - en’), 

erf-,(x) = 0. 

(7) 

@a> 

(8b) 

(84 

(84 

As one recurs forward, significant figures are lost if n becomes too large. We have 
been concerned with generating erfc,(x) to an accuracy of at least 14 significant 
figures. In this case, forward recursion is applicable fori 

(n + 1) < R(x) = 1.3/x2. (9) 

The curve R(x) is shown in Fig. 2 where, because of the logarithmic representation, 
it appears as a straight line. Since, in practice, all functions with 0 < YE < N are 
needed together, our method and program evaluates and stores all those functions 
simultaneously. Two cases arise: N < R(x) and N > R(x). If N < R(x), forward 
recursion is used. If N > R(x), backward recursion is used all the way to n = 0. 

FORWARD RECURSION, FOR NCR(X) 

In this case, the recurrence relation (5) or (8) is used to generate all the erfc,(x). 
The factors r(n) occurring in it can be calculated from 

y(n) = y(n - 2)[1 - (n - 1)-l], (W 

r(n) r(n + 1) = 2/n, (lob) 

y(1) = %-1/z, y(2) = 2+/z. UOC) 
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For the calculation of erfc,(x), two ranges of x have to be distinguished. If 
x < 13.3, the complementary error function (erfc x) can be approximated 
polynomial whose coefficients are obtained from expansions in Chebyshev 
polynomials [3]. The IBM 360~supplied library subprogram uses this metho 
This function is then multiplied by ezz to obtain erfc,(x). For x > 13.3, P* over- 
flows (>1075) the computer, and erfc,(x) is obtained from the continued fractions 
given by Abramowitz [l], 

1 l/2 1 312 2 d/2 erfc,(x) = - - - - -_ . . . 
xi x+ x+ x+ x-k 

for x > 0. Ulf 

The procedure described by Abramowitz [4] is used in calculating Eq. (11). 
exhaustive search for finding the optimal method for evaluating erfc,(x) over the 
entire argument range was not made. 

For small values of x the recurrence relations (8) together with erf,(x) = 
2+Jzx + 0(x3) yields 

erf,(x) = x{r(n) + -An - 2) + 34 - 4) + .I. -I- y(l) or y(O)), (1% 

where y(O) is defined by y(O) = y(2). From this equation, it is found that 

erf,(x) < 10-16.15, if (n + 1) < L(x) = 10-s1.53 x -1.Q4e (13) 

The line L(x) also appears as a straight line in Fig. 2. Below this line, erfc,(x) is 
indistinguishable from 1 for the computer. Thus, the upward recurrence relation 
(5) works only for (n + 1) > L(x). For (n + 1) < L(x) the recurrence relations (8) 
must be used. 

FIG. 2. Regions in the (x, n) plane referring to orders of magnitude and recursive evaluation 
of erfc,(x). 
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BACKWARD RECURSION, FOR N> R(x) 

The choice of starting values required for backward recursion has been carefully 
discussed by Gautschi [5] for general recursion relations of the type (5). This 
section is roncerned with the implementation of his general results in the present 
case. 

The algorithm as applied to erfc,(x) is as follows. First, a set of functions 
P, = K erfc,(x) is found, where K is independent of n but not of x. If iV is the 
maximum value of n desired, and p the number of significant digits desired, the 
two starting functions required for the backward recursion are chosen as 

P, 5 0, Pvel = an arbitrary constant, (14) 

where the index v must satisfy 

Y b N[l + (JJ In 10 + In 2)/2(2N)1/2x]2. 

In our case p = j5 and, thus, we choose 

v = ivp, 

where 
(15) 

p = p(N,x)-= (1 + 12.4566/mW2F (16) 

The values of P, frr y1 < v - 1 are then generated using the backward recursion 
relation, 

P,-, = q(n) Pnvl + P, (17) 

until PO is obtained. This P,, is compared with erfc,(x), and K-l is found as 

K-l = erfcO(x)/PO . (18) 

The desired functions are then obtained from 

erfc,(x) = K-lPn , 1 <n < iV. (19) 

The function ertc,(x) and the factors y(n) are calculated as before. From Fig. 1, 
it is evident that the values of P, will increase during backward recursion. For this 
reason, the constant in’ Eq. (14) is chosen as 10-76. 

The factor p in I$. (15) is always > 1. It is of some interest to know its depen- 
dence upon N and X. It is apparent that the lines p = constant will also be straight 
lines in Fig. 2. Some of them are shown, with the appropriate p value indicated, 
as dashed lines. The largest p value, namely p = 118.6, occurs for the line R(x), 
which denotes the lower limit of the downward recursion region. The values of v, 
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corresponding to points on this line according to Eq. (15), are indicated by a dotte 
straight line in Fig. 2. 

If, for a given x and N, v is chosen smaller than the value of Eq. (15), then the 
accuracy obtained deteriorates more and more below 15 significant figures, as Y 
is decreased below the value of Eq. (15). On the other hand, no further improve- 
ment in accuracy within the first 15 figures occurs, if one chooses v larger than the 
value of Eq. (15). 

UPPER LIMIT FOR BACKWARD RECURSIQN 

For sufficiently large values of x and N, the functions erfc,(x) will underflow 
a given computer. For large values of x, the limiting behavior is 

erfc,(x) w  F(l + R/2)/7Wx”‘1. WY 

The curve where erfc,(x) = 10P5 is indicated by H(x) in Fig. 2. Hence, erfc, x = 0 
for n > N(x) on our computer. In particular, one has erfc,(x) = 0 for x = I074.75; 
hence this is the largest x value for which any erfc&) is nonzero. For n > 2, 
the curve H(x) is given by 

(log H + 2 log x - 4.16)(log H + 0.1 log x - 1.66) = 0.33, if 0 < logx < 1.70, 

Gw 

(log H + 2 log x - 4.16) = 7.02(log H - 0.04 log x - 2.05), 

if 1.7O<logx<37. (21b) 

It has the straight line log(n + 1) = 4.16 - 2 log x as an asymptote. The latter 
corresponds to a p value of 1.217. 

It can be seen that no overflow or underflow problems occur in the use of 
Eqs. (18) and (19) if the initial value of v in Eq. (14) is chosen to be <H(x) and 
P,-, = 1O-75 as mentioned before. Hence, erfc,(x) is set equal zero for all n values 
> H(x) and Eq. (15) is replaced by 

v = min(Np, H(x)). WI 

The difference between v and N, as given by Eq. (15), is negligible for iV lying 
on the Iine H(x). This can be seen from the dotted curve which gives the v value 
corresponding to N values on H(x). 

The functions in erfc x and S,(x), mentioned in the introduction, yield con- 
siderably more limited computational schemes, because the orders of rna~it~~e 
of these functions change much more drastically with M and x. 
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