# Note <br> Numerical Analysis and Evaluation of Normalized Repeated Integrals of the Error Function and Related Functions* 

## Introduction

Computations in physics and chemistry often require the calculation of functions related to the repeated integrals of the complementary error function [1]

$$
\begin{align*}
i^{n} \operatorname{erfc} x & =\int_{x}^{\infty} d t i^{n-1} \operatorname{erfc} t \\
& -2 \pi^{-1 / 2} \int_{x}^{\infty} d t e^{-t^{2}}(t-x)^{n / n!}  \tag{1a}\\
i^{-1} \operatorname{erfc} x & =2 \pi^{-1 / 2} e^{-x^{2}} \tag{1b}
\end{align*}
$$

We have encountered them in molecular quantum mechanics involving overlap integrals between an exponential-type atomic orbital ( $r^{k-1} e^{-r}$ ) and a Gaussian-type atomic orbital ( $r^{l-1} e^{-\alpha r^{2}}$ ), giving rise to [2]

$$
\begin{equation*}
S_{n}=\int_{0}^{\infty} r^{n} e^{-\left(r+\alpha r^{2}\right)} d r, \quad n=k+l . \tag{2a}
\end{equation*}
$$

It can be shown that they are related to the functions of Eq. (1) by

$$
\begin{equation*}
S_{n}=\frac{1}{2} \pi^{1 / 2} n!\left(4 x^{2}\right)^{(n+1) / 2}\left(i^{n} \operatorname{erfc} x\right) e^{x^{2}} \tag{2b}
\end{equation*}
$$

From a numerical point of view, the functions given in Eqs. (1) and (2) are extremely unsatisfactory because they rapidly vary by many orders of magnitude as $n$ and $x$ increase. For this reason a new set of functions, $\operatorname{erfc}_{n}(x)$, called "Normalized Repeated Error Integrals", is introduced in this note. They are numerically very-well behaved and, on the basis of a brief numerical analysis, a computational method is described by which they can be evaluated without loss of significant figures. A double-precision fortran IV computer program based on this method has been prepared. Itsevaluates $\operatorname{erfc}_{9}(x)$ to at lcast 15 significant figures and $\operatorname{erfc}_{n}(x)$ for $n \geqslant 1$ to at least 14 significant figures on the IBM 360/65

[^0]computer. It has been submitted to the Quantum Chemistry Program Exchange at Indiana University.

## Normalization

The normalized repeated error integrals are defined as

$$
\begin{align*}
\operatorname{erfc}_{n}(x) & =2^{n} \Gamma(1+n / 2)\left(i^{n} \operatorname{erfc} x\right) e^{x^{2}} \\
& =\left[2 / \Gamma\left(\frac{n+1}{2}\right)\right] \int_{x}^{\infty} d t(t-x)^{n} e^{-t^{2}+x^{2}}, \quad \text { for } n=0,1, \ldots  \tag{3a}\\
\operatorname{erfc}_{0}(x) & =e^{x^{2}} \operatorname{erfc} x  \tag{3b}\\
\operatorname{erfc}_{-1}(x) & =1 \tag{3c}
\end{align*}
$$

The behavior of these functions for $0 \leqslant n \leqslant 5000$ and $10^{-5} \leqslant x \leqslant 10^{4}$ is exhibited in Fig. 1. ${ }^{1}$ Note that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{erfc}_{n}(x)=0 \tag{3d}
\end{equation*}
$$



Fig. 1. Behavior of $\operatorname{erfc}_{n}(x)$.

[^1]Figure 1 suggests that it may be useful to write

$$
\begin{equation*}
\operatorname{erfc}_{n}(x)=\operatorname{erfc}_{0}\left[x g_{n}(x)\right] \quad \text { or } \quad \operatorname{erfc}_{n}(x)=\operatorname{erfc}_{1}\left[x h_{n}(x)\right] \tag{4a}
\end{equation*}
$$

where $g_{n}(x)$ and $h_{n}(x)$ can be expected to be slowly varying functions. A rough numerical examination yielded the expression

$$
\begin{align*}
\log g_{n}(x) & =g^{\prime}(\mu)+x g^{\prime \prime}(\mu) \\
g^{\prime}(\mu) & -0.53 \mu \\
g^{\prime \prime}(\mu) & =\mu\left(0.59-1.49 \mu+0.98 \mu^{2}-0.06 \mu^{3}\right)  \tag{4b}\\
\mu & =\log (n+1)
\end{align*}
$$

The accuracy of this approximation, as seen from Table I, indicates that this approach can be further refined.

TABLE I
Comparison between $\operatorname{erfc}_{n}(x)$ and $\operatorname{erfc}_{0}\left[x g_{n}(x)\right]$.

| $\log x$ | $\operatorname{erfc}_{10}(x)$ | $\operatorname{erfc}_{0}\left(x g_{10}\right)$ | $\operatorname{erfc}_{100}(x)$ | $\operatorname{erfc}_{0}\left(x g_{100}\right)$ | $\operatorname{erfc}_{1000}(x)$ | $\operatorname{erfc}_{0}\left(x g_{1000}\right)$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -3 | 0.995 | 0.995 | 0.986 | 0.986 | 0.956 | 0.958 |
| -2.5 | 0.988 | 0.988 | 0.957 | 0.960 | 0.866 | 0.864 |  |
| -2 | 0.956 | 0.961 | 0.870 | 0.874 | 0.640 | 0.620 |  |
| -1.5 | 0.866 | 0.876 | 0.640 | 0.641 | 0.240 | 0.192 |  |
| -1 | 0.640 | 0.668 | 0.244 | 0.246 | 0.011 | 0.010 |  |
| 0.5 | 0.240 | 0.340 | 0.010 | 0.021 | 0.000 | 0.000 |  |
| 0 | 0.016 | 0.044 | 0.000 | 0.000 | 0.000 | 0.000 |  |

## Recurrence Relation

The computational method to be described is based on the recurrence relation for the functions (3), viz.,

$$
\begin{align*}
& \operatorname{erfc}_{n}(x)=-x \gamma(n) \operatorname{erfc}_{n-1}(x)+\operatorname{erfc}_{n-2}(x), \quad n=2,3, \ldots,  \tag{5a}\\
& \operatorname{erfc}_{1}(x)=-x \gamma(1) \operatorname{erfc}_{0}(x)+1 \tag{5b}
\end{align*}
$$

where

$$
\begin{equation*}
\gamma(n)=\Gamma\left(\frac{n}{2}\right) / \Gamma\left(\frac{n+1}{2}\right), \tag{6a}
\end{equation*}
$$

$$
\gamma(n)=\frac{(n-2)(n-4)(n-6)}{(n-1)(n-3)(n-5)} \cdots \begin{cases}\cdots \frac{3.1}{4.2} \pi^{1 / 2}, & \text { if } n=\text { odd }  \tag{6b}\\ \cdots \frac{4.2}{5.3} 2 \pi^{-1 / 2}, & \text { if } n=\text { even }\end{cases}
$$

This relation is obtained from the recurrence relation for $i^{n} \operatorname{erfc} x$ given by Abramowitz [1]. Some approximate values of $\gamma(n)$ are as follows:

| $n$ | 1 | 2 | 3 | 10 | 100 | 1000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\gamma(n)$ | 1.772 | 1.128 | 0.886 | 0.459 | 0.142 | 0.0447 |

For very small values of $x$, the functions

$$
\begin{equation*}
\operatorname{erf}_{n}(x)=1-\operatorname{erfc}_{n}(x) \tag{7}
\end{equation*}
$$

are preferable. They satisfy the relations

$$
\begin{align*}
\operatorname{erf}_{n}(x) & =\operatorname{erf}_{n-2}(x)+x \gamma(n)\left[1-\operatorname{erf}_{n-1}(x)\right]  \tag{8a}\\
\operatorname{erf}_{1}(x) & =x \gamma(1)\left[1-\operatorname{erf}_{0}(x)\right]  \tag{8b}\\
\operatorname{erf}_{0}(x) & =e^{x^{2}} \operatorname{erf} x+\left(1-e^{x^{2}}\right)  \tag{8c}\\
\operatorname{erf}_{-1}(x) & =0 \tag{8d}
\end{align*}
$$

As one recurs forward, significant figures are lost if $n$ becomes too large. We have been concerned with generating $\operatorname{erfc}_{n}(x)$ to an accuracy of at least 14 significant figures. In this case, forward recursion is applicable for

$$
\begin{equation*}
(n+1) \leqslant R(x)=1.3 / x^{2} \tag{9}
\end{equation*}
$$

The curve $R(x)$ is shown in Fig. 2 where, because of the logarithmic representation, it appears as a straight line. Since, in practice, all functions with $0 \leqslant n \leqslant N$ are needed together, our method and program evaluates and stores all those functions simultaneously. Two cases arise: $N<R(x)$ and $N \geqslant R(x)$. If $N<R(x)$, forward recursion is used. If $N \geqslant R(x)$, backward recursion is used all the way to $n=0$.

Forward Recursion, for $N<R(x)$
In this case, the recurrence relation (5) or (8) is used to generate all the $\operatorname{erfc}_{n}(x)$. The factors $\gamma(n)$ occurring in it can be calculated from

$$
\begin{align*}
\gamma(n) & =\gamma(n-2)\left[1-(n-1)^{-1}\right]  \tag{10a}\\
\gamma(n) \gamma(n+1) & =2 / n,  \tag{10b}\\
\gamma(1) & =\pi^{1 / 2}, \quad \gamma(2)=2 \pi^{-1 / 2} \tag{10c}
\end{align*}
$$

For the calculation of $\operatorname{erfc}_{0}(x)$, two ranges of $x$ have to be distinguished. If $x \leqslant 13.3$, the complementary error function (erfc $x$ ) can be approximated by a polynomial whose coefficients are obtained from expansions in Chebyshev polynomials [3]. The IBM 360 -supplied library subprogram uses this method. This function is then multiplied by $e^{x^{2}}$ to obtain $\operatorname{erfc}_{0}(x)$. For $x>13.3, e^{x^{2}}$ overflows $\left(>10^{75}\right)$ the computer, and $\operatorname{erfc}_{0}(x)$ is obtained from the continued fractions given by Abramowitz [1],

$$
\begin{equation*}
\pi^{1 / 2} \operatorname{erfc}_{0}(x)=\frac{1}{x+} \frac{1 / 2}{x+} \frac{1}{x+} \frac{3 / 2}{x+} \frac{2}{x+} \cdots \quad \text { for } \quad x>0 \tag{11}
\end{equation*}
$$

The procedure described by Abramowitz [4] is used in calculating Eq. (11). An exhaustive search for finding the optimal method for evaluating erfc $\mathrm{e}_{0}(x)$ over the entire argument range was not made.

For small values of $x$ the recurrence relations (8) together with $\operatorname{erf}_{0}(x)=$ $2 \pi^{-1 / 2} x+0\left(x^{3}\right)$ yields

$$
\begin{equation*}
\operatorname{erf}_{n}(x) \approx x\{\gamma(n)+\gamma(n-2)+\gamma(n-4)+\cdots+\gamma(1) \text { or } \gamma(0)\} \tag{12}
\end{equation*}
$$

where $\gamma(0)$ is defined by $\gamma(0)=\gamma(2)$. From this equation, it is found that

$$
\begin{equation*}
\operatorname{erf}_{n}(x)<10^{-16.15}, \quad \text { if } \quad(n+1)<L(x)=10^{-31.53} x^{-1.94} \tag{13}
\end{equation*}
$$

The line $L(x)$ also appears as a straight line in Fig. 2. Below this line, $\operatorname{erfc}_{n}(x)$ is indistinguishable from 1 for the computer. Thus, the upward recurrence relation (5) works only for $(n+1)>L(x)$. For $(n+1)<L(x)$ the recurrence relations (8) must be used.


Fig. 2. Regions in the ( $x, n$ ) plane referring to orders of magnitude and recursive evaluation of $\operatorname{erfc}_{n}(x)$.

$$
\text { BACKWARD RECURSION, FOR } N \geqslant R(x)
$$

The choice of starting values required for backward recursion has been carefully discussed by Gautschi [5] for general recursion relations of the type (5). This section is concerned with the implementation of his general results in the present case.

The algorithm as applied to $\operatorname{erfc}_{n}(x)$ is as follows. First, a set of functions $P_{n}=K \operatorname{erfc}_{n}(x)$ is found, where $K$ is independent of $n$ but not of $x$. If $N$ is the maximum value of $n$ desired, and $p$ the number of significant digits desired, the two starting functions required for the backward recursion are chosen as

$$
\begin{equation*}
P_{\nu}=0, \quad P_{\nu-1}=\text { an arbitrary constant } \tag{14}
\end{equation*}
$$

where the index $\nu$ must satisfy

$$
\nu \geqslant N\left[1+(p \ln 10+\ln 2) / 2(2 N)^{1 / 2} x\right]^{2}
$$

In our case $p=15$ and, thus, we choose

$$
\begin{equation*}
\nu=N \rho \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho=\rho(N, x)=\left(1+12.4566 / x N^{1 / 2)^{2}}\right. \tag{16}
\end{equation*}
$$

The values of $P_{n}$ for $n<\nu-1$ are then generated using the backward recursion relation,

$$
\begin{equation*}
P_{n-2}=x \gamma(n) P_{n-1}+P_{n} \tag{17}
\end{equation*}
$$

until $P_{0}$ is obtained. This $P_{0}$ is compared with $\operatorname{erfc}(x)$, and $K^{-1}$ is found as

$$
\begin{equation*}
K^{-1}=\operatorname{erfc}_{0}(x) / P_{0} \tag{18}
\end{equation*}
$$

The desired functions are then obtained from

$$
\begin{equation*}
\operatorname{erfc}_{n}(x)=K^{-1} P_{n}, \quad 1 \leqslant n \leqslant N \tag{19}
\end{equation*}
$$

The function $\operatorname{ertc}_{0}(x)$ and the factors $\gamma(n)$ are calculated as before. From Fig. 1, it is evident that the values of $P_{n}$ will increase during backward recursion. For this reason, the constant in Eq. (14) is chosen as $10^{-75}$.

The factor $\rho$ in Eq. (15) is always $>1$. It is of some interest to know its dependence upon $N$ and $x$. It is apparent that the lines $\rho=$ constant will also be straight lines in Fig. 2. Some of them are shown, with the appropriate $\rho$ value indicated, as dashed lines. The largest $\rho$ value, namely $\rho=118.6$, occurs for the line $R(x)$, which denotes the lower limit of the downward recursion region. The values of $\nu$,
corresponding to points on this line according to Eq. (15), are indicated by a dotted straight line in Fig. 2.

If, for a given $x$ and $N, v$ is chosen smaller than the value of Eq. (15), then the accuracy obtained deteriorates more and more below 15 significant figures, as $v$ is decreased below the value of Eq. (15). On the other hand, no further improvement in accuracy within the first 15 figures occurs, if one chooses $v$ larger than the value of Eq. (15).

## Upper Limit for Backward Recursion

For sufficiently large values of $x$ and $N$, the functions $\operatorname{erfc}_{n}(x)$ will underflow a given computer. For large values of $x$, the limiting behavior is

$$
\begin{equation*}
\operatorname{erfc}_{n}(x) \approx \Gamma(1+n / 2) / \pi^{1 / 2} x^{n+1} \tag{20}
\end{equation*}
$$

The curve where $\operatorname{erfc}_{n}(x)=10^{-75}$ is indicated by $H(x)$ in Fig. 2. Hence, $\operatorname{erfc}_{n} x=0$ for $n>H(x)$ on our computer. In particular, one has $\operatorname{erfc}_{0}(x)-0$ for $x=10^{74.75}$; hence this is the largest $x$ value for which any $\operatorname{erfc}_{n}(x)$ is nonzero. For $n \geqslant 1$, the curve $H(x)$ is given by
$(\log H+2 \log x-4.16)(\log H+0.1 \log x-1.66)=0.33$, if $0<\log x \leqslant 1.70$,
$(\log H+2 \log x-4.16)=7.02(\log H-0.04 \log x-2.05)$,

$$
\begin{equation*}
\text { if } 1.70<\log x<37 \tag{21b}
\end{equation*}
$$

It has the straight line $\log (n+1)=4.16-2 \log x$ as an asymptote. The latter corresponds to a $\rho$ value of 1.217 .

It can be seen that no overflow or underflow problems occur in the use of Eqs. (18) and (19) if the initial value of $\nu$ in Eq. (14) is chosen to be $<H(x)$ and $P_{\nu-1}=10^{-75}$ as mentioned before. Hence, $\operatorname{erfc}_{n}(x)$ is set equal zero for all $n$ values $\geqslant H(x)$ and Eq. (15) is replaced by

$$
\begin{equation*}
\nu=\min \{N \rho, H(x)\} \tag{22}
\end{equation*}
$$

The difference between $v$ and $N$, as given by Eq. (15), is negligible for $N$ lying on the line $H(x)$. This can be seen from the dotted curve which gives the $y$ value corresponding to $N$ values on $H(x)$.

The functions $i^{n} \operatorname{erfc} x$ and $S_{n}(x)$, mentioned in the introduction, yield considerably more limited computational schemes, because the orders of magnitude of these functions change much more drastically with $n$ and $x$.

## References

1. M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions," pp. 298-300, National Burcau of Standards, Applied Math. Ser. 55, Washington, D. C., 1965.
2. K. O-Ohata, H. Taketa, and S. Huzinaga, J. Phys. Soc. Japan 11 (1966), 2306.
3. IBM Corporation, "IBM System/360: FORTRAN IV Library Subprograms," Form C286596, Programming Systems Publications, New York, N. Y., 1966.
4. See Ref. [1, p. 19].
5. W. Gautschi, Math. Comp. 15 (1961), 227-232.

Received: December 15, 1970
Richard D. Bardo and Klaus Ruedenberg
Institute of Atomic Research, Departments of Chemistry and Physics, Iowa State University, Ames, Iowa 50010


[^0]:    * Work performed in the Ames Laboratory of the U. S. Atomic Energy Commission, Contribution No. 2907.

[^1]:    ${ }^{1}$ The logarithms to base 10 and $e$ are denoted by " $\log$ " and "In", respectively.

